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Magnetosensitive radiofluorescence resulting from geminate recombination of a spin triad involving a radical
ion and a biradical ion formed radiolytically in non-polar solutions has been investigated theoretically.
The effect of exchange interaction in the biradical ion on the kinetics and yield of radiofluorescence has been
studied. Hyperfine coupling in the radical ion and in the biradical ion has been taken into account. The
existence of local fluorescence resonances at zero magnetic field and at a field close to the value of the exchange
integral in the biradical has been predicted theoretically. The latter result provides a basis to determine the
exchange integral in short-lived radiolytically generated biradical ions with high accuracy from experiment.

I. Introduction

Static magnetic fields are known to affect the recombination
fluorescence (radiofluorescence) of radical ion pairs generated
in solution by ionizing radiation. Under ionization and the sub-
sequent reactions, spin correlated radical ion pairs (S+�/e�),
(D+�/e�), (S+�/A��) and (D+�/A��) are formed. Here S is
the solvent molecule, A and D are the molecules of electron
and hole acceptors, respectively.1,2 The primary pairs (S+�/
e�) mainly arise in the singlet spin state. Since electron and
hole capture occurs within short times of about several nano-
seconds one can assume that the radical pairs (D+�/e�),
(S+�/A��), (D+�/A��) are also formed in the singlet spin state.
The singlet–triplet (S–T) transitions in the radical pair and,
hence, the kinetics and yield of radiofluorescence, are mainly
determined by the hyperfine couplings of the unpaired elec-
trons of the radical pair with the magnetic nuclei and by inter-
action of these electrons with an external magnetic field.3–7

Earlier analytical and numerical estimations8–11 have shown
that interradical dipole–dipole and exchange interactions have
no effect on the spin evolution of radical ion pairs generated by
ionizing radiation in solutions of normal viscosity. The reason
is that radicals are spaced widely during the main time before
recombination. However, in three-spin systems consisting of a
biradical ion and a radical ion, exchange and dipole–dipole
interactions in the biradical ion can substantially affect spin
dynamics. An example of such a system is the radical triad
in the photosynthetic reaction centre,12 and another one is a
photochemically generated radical pair combined with a stable
radical.13 It should be noted that the term ‘‘ spin triad’’, for the
first time, was introduced by the authors of the work.14 More
generally such systems can be considered as spin-catalytic
systems.15,16

With the purpose of studying radiation-generated three-spin
systems, the molecules A–Sp–R� containing a stable radical
moiety have been recently synthesized.17 Here A is a lumi-
nescing aromatic group, Sp is the molecular bridge, and R�

is a stable nitroxide radical. Under ionization of hydrocarbon
solution these molecules can serve as electron acceptors, i.e.,
they can capture an electron and form a spin-correlated radical
ion/biradical ion pair of the type S+�/(A��–Sp–R�) or D+�/
A��–Sp–R�. Preliminary experiments have shown, that the

presence of a paramagnetic centre R� changes the magnetic
field effect in radiofluorescence significantly.
In this paper, magnetic field effects on the kinetics and yield

of radiofluorescence in three-spin radical ion/biradical ion sys-
tems are investigated theoretically. We considered a model
biradical having only one magnetic nucleus. The intensity of
recombination fluorescence in a magnetic field is determined
by the singlet state population of the two-spin system consist-
ing of the radical ion and the radical ion centre of the biradical.
We have obtained analytical expressions for the singlet state
population in zero magnetic field, and also in the vicinity of
B� |J|, where B is the strength of the magnetic field and J is
the exchange integral in the biradical. Numerical calculations
of the kinetics and yield of fluorescence have been performed,
and their dependence on the magnetic field has been studied.
It has been shown that both the kinetics and the yield of
fluorescence exhibit resonance behaviour in the regions B� 0
and B� |J|, the latter will be referred to as a J-resonance.

II. Model of the radical ion/biradical ion pair
(RIBIP)

The ionization and subsequent reactions that occur under irra-
diation of hydrocarbon solutions of A–Sp–R� are as follows:

S ! Sþ
� þ e�; ð1Þ

e� þA Sp R
� ! A��

Sp R
�
; ð2Þ

Sþ
� þD ! Dþ� þ S; ð3Þ

Dþ� þA��
Sp R

� ! D� þA Sp R
�
; ð4Þ

or Dþ� þA��
Sp R

� ! DþA� Sp R
�
; ð5Þ

In reactions (1–5) the spin correlated D+�/A�� pair incorpo-
rated in RIBIP D+�/(A��–Sp–R�) is formed. The stable radical
R� is in equilibrium spin state at the moment of RIBIP forma-
tion. The initial separation between the radical cation D+� and
the biradical anion A��–Sp–R� ranges up to some tens of ång-
ströms. Following their formation, radical ions diffusionally
approach each other in their mutual Coulombic attraction
potential and finally recombine, see reactions (4) and (5).
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Recombination of these pairs gives rise to the corresponding
excited molecules. The spin multiplicity of the excited molecule
D* or luminophore group A* coincides with that of the
radical pair D+�/A�� at the instant of recombination. Singlet
excited molecules give rise to fluorescence, while triplet
excited ones decay in a non-radiative way. In the absence of
a hole acceptor D in the solution, the solvent radical cations
S+� take part in reactions (4) and (5) instead of the radical
ion D+�.
Let us consider the following model of RIBIP and spin tran-

sitions in it. We take into account hyperfine interactions both
in the radical ion D+� and in the biradical. We assume that the
exchange integral in the biradical is fixed, thus neglecting its
modulation due to conformational motion of the molecular
bridge Sp. We also shall not take into account paramagnetic
relaxation, in particular, the relaxation induced by dipole–
dipole interaction of biradical spins. In view of the results
described in refs. 8–11, exchange and dipole–dipole inter-
actions of radical ion D+� with biradical paramagnetic centres
A�� and R+� are also neglected. Under these assumptions the
Hamiltonian of RIBIP is as follows:

ĤH ¼
XN
i¼1

aiŜSDÎI
D

i þ gDb�h
�1BŜSDz þ gAb�h

�1BŜSAz

þ gRb�h
�1BŜSRz þ JŜSAŜSR þ AÎI ŜSR ð6Þ

where the z-axis is chosen along the magnetic field B. The
indices D, A, R correspond to the radical centres D+�, A��

and R�. The first term on the right hand side of eqn. (6)
describes the hyperfine couplings in the radical ion D+�. The
next three terms describe the Zeeman interaction of the
unpaired electrons with an external magnetic field. The term
JŜAŜR describes the exchange interaction of the unpaired
electrons in the biradical. Finally, the last term in (6) describes
the hyperfine coupling of the unpaired electron of radical R�

with the nucleus located on it. The effect of the location of
the magnetic nucleus on radical A�� will be also considered.
Let us assume for simplicity that the g-factors of the radicals

are identical: gD ¼ gA ¼ gR ¼ g. Inequality of g-factors may
play a vital part at strong magnetic fields when, for instance,

ðgA � gRÞb�h�1BqA ð7Þ

The case of strong magnetic fields including unequal g-factors
of radicals is considered later in section III.B. Let us assume,
except where otherwise indicated, that the exchange integral
J is positive and by far exceeds the hyperfine coupling con-
stants both in the radical ion D+� and in biradical, i.e.
J�A, ai . For the sake of definiteness we also suppose that
the hyperfine coupling constant A is positive, A > 0.
The radiofluorescence intensity I(t) at time t can be written

as:18

IðtÞ � rDA;SSðtÞFðtÞ ð8Þ

Here rDA,SS(t) is the singlet state population of the pair D+�/
A�� at time t, F(t) is the radical pair lifetime distribution func-
tion. The quantity F(t)dt gives the amount of recombined radi-
cal pairs or, which is the same, the amount of recombination
products formed for a time interval from t to t+dt. The
function F(t) is determined by the initial inter-radical distance
distribution in the radical pairs and by the diffusion in the
mutual Coulombic attraction potential. It does not depend
on the dynamics of the spin system. The finite fluorescence life-
time of the recombination product should be also taken into
account. After correction for the lifetime of the excited state
tfl the expression for the intensity of fluorescence I(t) takes
the form (see also ref. 19):

IðtÞ � 1

tf l

Z t

0

rDA;SSðt� tÞFðt� tÞ expð�t=tflÞdt; ð9Þ

We shall assume that the following inequality holds true:

Jtfl � 1 ð10Þ

The population rDA,SS(t) of the singlet state of the pair D+�/
A�� is given by the following expression:19

rDA;SSðtÞ ¼
1

4
� TrðŜSDŜSArðtÞÞ

ŜSDŜSA ¼ ŜSDxŜSAx þ ŜSDyŜSAy þ ŜSDzŜSBz

ð11Þ

where r(t) is the density matrix of the three-spin system RIBIP,
ŜD , ŜA , ŜDx , ŜAx , ŜDy , ŜAy , ŜDz , ŜAz are electron spin
operators of radical ions D+� and A��. Neglect of spin inter-
actions between D+� and A�� essentially simplifies the calcula-
tion, since in that case the spin evolution of the radical ion and
the biradical ion can be calculated separately and the following
expression is valid:20

rDA;SSðtÞ ¼
1

4
þ 1

4
TD
ik ðtÞTA

ik ðtÞ ð12Þ

Here TD
ik(t) and TA

ik(t) (i,k ¼ x,y,z) are the time-dependent
tensor components related to the Heisenberg evolution of the
spin operators of radicals D+� and A�� in the following way:

SDiðtÞ ¼ TD
ik ðtÞSDkð0Þ

SAiðtÞ ¼ TA
ik ðtÞSAkð0Þ
ði; k ¼ x; y; zÞ

ð13Þ

In eqns. (12) and (13) summation over repeating indices is
implied. The second equality in eqn. (13) implies that aver-
aging-out over spin states of the radical R� is already per-
formed. We consider two limiting cases for the hyperfine
structure of the radical ion D+�. The first case the hyperfine
couplings in the radical ion D+� are negligible, that is, the
EPR spectrum of D+� consists of a single line. In the second
case the radical ion D+� has a broad inhomogeneous EPR
spectrum due to unresolved hyperfine structure. The only non-
zero elements of TD

ik in the absence of the external magnetic
field (i.e. at B ¼ 0) and for the absence of hyperfine couplings
in the radical ion D+�20,21 are:

TD
xx ¼ 1;TD

yy ¼ 1;TD
zz ¼ 1; ð14Þ

(notice that the tensor components TD
ik , i,k ¼ x,y,z differ by a

factor of 2 from the ones defined in20,21). For TD
ik in a magnetic

field B we have:

TD
xx ¼ cosðo0tÞ; TD

xy ¼ � sinðo0tÞ
TD
yx ¼ sinðo0tÞ; TD

yy ¼ cosðo0tÞ; TD
zz ¼ 1;

ð15Þ

Here o0 ¼ gb�h�1B is the Larmor frequency.
Let us consider now the case when the radical ion D+� has a

broad hyperfine stucture with the second moment s2 given by:

s2 ¼
X
i

1
3 I

D
i ðIDi þ 1Þa2i ;

Here IDi is the spin of the i-th magnetic nucleus in the radical
ion D+�. After a time of the order of 1/s, the tensor compo-
nents TD

ik (t) become time-independent. Their stationary values,
as can be easily found from eqns. (7)–(9) in ref. 21 are equal to:

TD
xx ¼ TD

yy ¼
1

3
e�ðo2

0
=2s2Þ þ I

o0

s

� �
;

TD
zz ¼ 1� 2

3
e�ðo2

0
=2s2Þ � 2I

o0

s

� �
;

IðqÞ ¼ � 1ffiffiffiffiffiffi
2p

p
Z 1

0

e�ðx2þq2Þ

� exq

q2
1

xq
� 1

� ��
� e�xq

q2
1

xq
þ 1

� �
þ 2

3
x2
�
dx ð16Þ
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In the particular case of zero magnetic field one has (see also
ref. 20):

TD
xx ¼ 1

3
; TD

yy ¼
1

3
; TD

zz ¼
1

3
; ð17Þ

In a strong magnetic field, well above hyperfine coupling con-
stants, there is only one nonzero element of the tensor TD

ik :

TD
zz ¼ 1; ð18Þ

Having eqns. (14–18), to calculate the singlet state population
rDA,SS(t) we need the corresponding quantities, TA

ik, for the
spin of A��. The time evolution of the operator ŜA is given by:

ŜSAðtÞ ¼ expðiĤHbirtÞŜSAð0Þexpð�iĤHbirtÞ ð19Þ

Here Ĥbir is the biradical spin Hamiltonian:

ĤHbir ¼ o0ŜSAz þ o0ŜSRz þ JŜSAŜSR þ AÎIŜSR ð20Þ

To simplify the notation further (except as otherwise noted)
o0 , J, A are all measured in mT, then, for instance, o0 can
be identified with B. The tensor components TA

ik of the spin
of radical centre A�� can be evaluated in the following way:

TA
ik ¼ TrðŜSAiðtÞŜSAkð0ÞÞ; ði;k ¼ x;y;zÞ ð21Þ

here ŜAi(t) are the x, y, z projections of vector ŜA(t) defined in
eqn. (19). Operators ŜAi(t) and ŜAk(0) are considered in the
basis of products of spin states of the radical centres A�� and
R�. The trace over A�� spin states is also taken in this basis.
It should be emphasized that eqns. (12) and (21) are valid only
in the case of equal population of spin states of the radical
centre R� at the initial moment of time. This is true for not
too strong magnetic fields, when it is possible to neglect the
Boltzmann difference of spin level populations of the radical R�.
In several cases considered below we managed to obtain

analytical expressions for TA
ik(t), and, hence, for rDA,SS(t).

III. Results and discussion

Neglecting spin–spin interactions between radical ion D+� and
biradical A��–Sp–R� allows one to express the spin dynamics
of the system through independent dynamics of the radical
ion and the biradical. Thus for understanding the behavior
of a joint radical ion/biradical spin system in an external mag-
netic field, it will suffice to consider the biradical spin states
with varying the magnetic field. There are three regions of
magnetic fields where the spin dynamics of the biradical and,
hence, that of RIBIP, differ from each other significantly.
The weak magnetic field region extends from zero magnetic
field to fields comparable with the hyperfine coupling constant
A in the radical R�. The second region covers strong magnetic
fields where Larmor frequencies considerably exceed the
hyperfine coupling constant, yet the spin system is far from
the region of J-resonance, i.e. the following inequalities hold
true: o0 ¼ B�A and |B� J|�A, the latter meaning that
B can be both above or below J. The third region is the
J-resonance region, where |B� J|�A.
For nuclear spin 1/2 the spin level diagrams of the biradical

for these three regions are represented in Fig. 1. The spin wave
functions corresponding to these levels are defined as direct
products of the electron spin functions in the singlet-triplet
basis and the nuclear spin functions in Zeeman basis, aN ,
bN . For convenience, for each region of magnetic field, these
spin functions are arranged in two columns, corresponding
to different nuclear spin projections. Generally speaking, these
functions are not eigenfunctions of the biradical spin Hamil-
tonian (20). Thus, the RIBIP Hamiltonian has non-zero matrix
elements between some of them. These couplings are marked
on the diagram by dashed lines if consideration of non-zero
Hamiltonian matrix elements is essential. This is the case if
the value of a matrix element between two spin functions is

comparable with the energy difference between these two levels.
For instance, for zero (or weak, of the order of the hyperfine
coupling constant) magnetic field, the matrix element between
T0aN and T�bN , as well as between T�aN and T0bN states is
equal to A/2

p
2 and is comparable with the energy gap

between the two states (A/4 in zero magnetic field). Alterna-
tively, though there is a non-zero matrix element of A/4
between T0aN and SaN , as well as between the T0bN and
SbN , it can be neglected for any value of B, since the energy
difference between these levels equals J which exceeds this
matrix element by far. This mixing is therefore energy forbid-
den. In strong magnetic fields, but far from J-resonance (region
II) the states T0aN and T�bN , as well as T�aN and T0bN no
longer mix up. Thus all the states depicted in Fig. 1 for region
II become eigenstates of the biradical spin Hamiltonian. To be
more precise, spin functions of these states are eigenfunctions
with the accuracy of the order A/J or A/o0 in spin function
amplitudes. In this region of magnetic fields, both values A/J
and A/o0 are considered to be much less than unity.
In the region of J-resonance, when |B� J|�A, there is essen-

tial mixing between the T�aN and SbN states. Thus, one may
expect that when passing from region II to region III and again
to region II (with further increasing of the magnetic field)
recombination fluorescence exhibits resonance behaviour.

A. Spin dynamics in zero and weak magnetic fields

For B ¼ 0 we managed to obtain an analytical expression for
the singlet state population rDA,SS(B ¼ 0, t). In the absence of
hyperfine coupling in the radical ion D+� and for a spin-1/2
nucleus located on radical ion R�, the expression for the singlet
state population is:

rDA;SSðB ¼ 0; tÞ ¼ 1

4
þ 3

8
F1

Here F1 ¼
1

9O2
ð10O2 � 3J2Þ þ 3J2 cosðOtÞ
�

þ 2ð2O2 þ 2AO� OJÞ cos Aþ J � O
2

t

� �

þ 2ð2O2 � 2AOþ JOÞ cos Aþ Oþ J

2
t

� ��
ð22Þ

and O ¼ (A2+ J2�AJ)1/2.

Fig. 1 Spin level scheme for a biradical ion in magnetic field for:(I)
B ¼ 0; (II)B,|B� J|�A; (III) |B� J|�A (see text for details).
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When the spin-1/2 nucleus is located on A��, one obtains:

rDA;SSðB ¼ 0; tÞ ¼ 1

4
þ 3

8
F2

Here F2 ¼
1

9O2
ð3A2 þ 3J2 þ 4O2Þ þ 3ðA� JÞ2 cosðOtÞ
h

þ 2ð2O2 � AO� JOÞ cos Aþ J � O
2

t

� �

þ 2ð2O2 þ AOþ JOÞ cos Aþ Oþ J

2
t

� ��
ð23Þ

For a radical ion D+� having a broad hyperfine structure and
for location of the magnetic nucleus on R�, the singlet state
population is given by:

rDA;SSðB ¼ 0; tÞ ¼ 1

4
þ 1

8
F1 ð24Þ

while for a magnetic nucleus located on A��

rDA;SSðB ¼ 0; tÞ ¼ 1

4
þ 1

8
F2 ð25Þ

where F1 and F2 are the same as in (22) and (23).
It should be emphasized, that expressions (22–25) are valid

for arbitrary values (not only for J�A) and signs of J and A.
For a considered case of strong exchange interaction, i.e.,

when J�A, one can easily obtain: O� J�A/2. Conse-
quently, rDA,SS(B ¼ 0, t) given by eqns. (22)–(25) involves har-
monics with frequencies close to J. As we suppose that Jtfl� 1,
these high-frequency harmonics, when integrating according to
formula (9) are averaged to zero and their contribution in
fluorescence kinetics I(t) can be neglected. Thus it makes sense
to analyze only the slowly changing part (in the time scale 1/J)
of rDA,SS(t). Denoting the slow part as �rrDA,SS(t), for the
absence of hyperfine coupling in D+� we obtain the following
simple expression for �rrDA,SS(t):

�rrDA;SSðB ¼ 0; tÞ ¼ 13

24
þ 1

12
cos

3

4
At

� �
ð26Þ

irrespective of whether the magnetic nucleus is located on A��

or on R�.
For a broad hyperfine structure of radical ion D+� we have:

�rrDA;SSðB ¼ 0; tÞ ¼ 25

72
þ 1

36
cos

3

4
At

� �
ð27Þ

again independent of where the magnetic nucleus is located in
the biradical.
It was shown,22 that oscillation frequencies of singlet state

population (or population of any other state) are equal to
the differencies of stationary energies of the spin system (in
the absence of or neglecting paramagnetic relaxation). If
spin-spin couplings between radical ion and biradical can be
neglected, a spin eigenfunction of the radical+biradical sys-
tem is given by the product of a spin eigenfunction of the
biradical and that of the radical ion, and the energy of the
three-spin eigenstate is equal to the sum of the energies of bi-
radical and radical ion spin eigenstates. By using this approach
it can easily be shown that the oscillation frequency of the
singlet state population in zero magnetic filed is equal either
to 3

4A or to the value close to J, which is in agreement with
eqns. (22)–(27).
It is of interest to compare the obtained results for singlet

state population �rrDA,SS(B ¼ 0, t) with those in the absence
of exchange interaction in the biradical. Substitution of J ¼ 0
into eqns. (22)–(25) yields the following results for the singlet
state population. For the absence of hyperfine coupling in D+�

�rrDA;SSðB ¼ 0; tÞ ¼ 5

8
þ 3

8
cosAt ð28Þ

and for the broad hyperfine structure in D+�:

�rrDA;SSðB ¼ 0; tÞ ¼ 3

8
þ 1

8
cosAt ð29Þ

Eqns. (28) and (29) reproduce the well-known results for radi-
cal ion pairs.4,21,23,24 Thus, the strong exchange interaction
manifests itself as a decrease of the oscillation frequency in
zero field from A to 3

4A.
For a weak (less than hyperfine coupling constant A) non-

zero magnetic field the analytical expressions for rDA,SS(t)
are rather cumbersome even if one neglect energy forbidden
transitions between singlet and triplet biradical spin states.
Therefore for this range of magnetic fields we have perfor-
med numerical calculations with exact consideration of all
terms of the RIBIP Hamiltonian, eqn. (6). Let us define
the fluorescence intensity I(t) as a product of singlet state
population rDA,SS(B,t) and the normalized exponential
recombination function F(t) ¼ (1/t0)exp(�t/t0). In its turn
let us define the function Ī(t) as a product of the slowly
changing part of the singlet state population �rrDA,SS(B,t)
and the exponential recombination function F(t) ¼ (1/t0)
exp(�t/t0). Computation of �rrDA,SS(B,t) was performed by
the formula:

�rrDA;SSðB; tÞ ¼
1

2
rDA;SSðB; tÞ þ rDA;SSðB; tþ p=JÞ
� 	

ð30Þ

where the kinetics rDA,SS(B,t) and rDA,SS(B,t+p/J) were being
calculated numerically. It is easy to show that harmonics with
frequency J in rDA,SS(B,t) become equal to zero in �rrDA,SS(B,t).
Also, the amplitude of harmonics with frequencies w close to J
(i.e. (w� J)/J� 1) in rDA,SS(B,t) is multiplied by a small quan-
tity (w� J)/J in �rrDA,SS(B,t). Obviously I(0) ¼ F(0) ¼ 1/t0 ,
since rDA,SS(0) ¼ 1. The numerically calculated decays of fluor-
escence intensity Ī(t) in I(0) units are presented in Fig. 2 for a
number of magnetic field strengths and recombination lifetime
t0 ¼ 50 ns. The kinetics of Fig. 2 have been calculated for the
absence of hyperfine couplings in the radical ion D+� and for
a hyperfine coupling constant A ¼ 3 mT and an exchange inte-
gral J ¼ 500 mT. As is seen from Fig. 2, the oscillation fre-
quency of fluorescence kinetics in zero magnetic field is
higher than that in a strong magnetic field (at B ¼ 60 mT�
A ¼ 3 mT) and as it will be shown in the following
subsection, their ratio is equal to three. Also it is easy to see,

Fig. 2 Fluorescence kinetics in weak magnetic fields. The radical ion
D+� does not contain magnetic nuclei. Recombination function
F(t) ¼ (1/t0)exp(�t/t0), t0 ¼ 50 ns, hyperfine coupling constant
A ¼ 3 mT, J ¼ 500 mT. Ī(t) is the slowly changing part of fluorescence
intensity.
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that with increasing magnetic field, the fluorescence kinetics I(t)
at short times resembles the one in a strong magnetic field.
Fig. 3 presents kinetic curves Ī(t)/I(0) for the case when the

radical ion D+� has a broad hyperfine structure. The second
moment s2 of the hyperfine structure was chosen equal to
102 mT2. For calculations of TD

ik, i, k ¼ x,y,z the relation
(16) was employed. On each plot of Fig. 3 alongside with fluor-
escence kinetics for magnetic fields from B ¼ 0 to B ¼ 18 mT,
kinetics for a strong magnetic field B ¼ 60 mT (thick line) is
also shown. Since harmonics with frequencies close to J are
numerically filtered, the value �rrDA,SS(t) for B ¼ 60 mT practi-
cally does not depend on time and as it will be shown below, is
close to the value 3

8. Thus the kinetics Ī(t)/I(0) for a strong
magnetic field actually follows (with a factor 3

8) the exponential
function exp(�t/t0).
As is seen from the plots of Fig. 3 for magnetic fields of the

order of several times the hyperfine coupling constant A, the
kinetics contain both high and low frequencies and essentially
differ from that in zero or strong magnetic field. The presence
of these high-frequency oscillating components is determined
by contribution of terms of the type TD

xxT
A
xx and TD

yyT
A
yy to

�rrDA,SS(t) (see (12)). As the magnetic field increases, at B > s,
this contribution decreases and tends to zero, since TD

xx,
TD
yy ! 0. As is clearly seen from Fig. 3, the frequencies of oscil-

lations increase, but their amplitudes decrease with increas-
ing magnetic field, the curves ‘‘nestle up’’ to the one for
B ¼ 60 mT.
Note, that for strong exchange interaction the singlet

states SaN and SbN are spin eigenstates of the biradical spin
Hamiltonian for all magnetic fields, excluding the J-resonance
region. Their account in spin evolution, obviously, causes
oscillations in rDA,SS(t) with frequency J which are filtered
numerically for kinetics in Fig. 3. As the values TD

ik are consid-
ered to be time independent (for a broad hyperfine structure
in D+�), the low frequencies of I(t) are determined by
the energy differences (Ei�Ej) only, where Ei , Ej are energies
of the spin eigenstates of the biradical, which are deter-
mined exclusively by triplet state mixing. Finding Ei is rather

straightforward, and they are equal to:

E1 ¼ Bþ J=4þ A=4;

E2 ¼
B� A=4

2
þ J

4
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� A

4

� �2

þA2

2

s
;
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B� A=4

2
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� 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� A

4

� �2

þA2

2

s
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E4 ¼ �Bþ A=4

2
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þ 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ A

4

� �2

þA2

2

s
;

E5 ¼ �Bþ A=4

2
þ J

4
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ A

4

� �2

þA2

2

s
;

E6 ¼ �Bþ J=4þ A=4; ð31Þ

For B�A the difference (Ei�Ej) can take six non-zero values:
A/2, o0�A/4, o0+A/4, 2o0 , 2o0�A/2, 2o0+A/2. There-
fore for B�A the Ī(t) kinetics can contain up to six harmo-
nics, their amplitudes being not small, as long as Bps.

B. Spin dynamics in a strong magnetic field far
from the J-resonance region

In a strong magnetic field, i.e. much exceeding the hyperfine
coupling constants in both radical ion and biradical, the
non-secular part of the hyperfine coupling in the Hamiltonian,
eqn. (6), can be completely neglected, as flip–flop transitions
with simultaneous inversion of electron and nuclear spins are
energy forbidden. This is true for all strong magnetic fields,
excluding the region of J-resonance, when |B� J|�A (case
III in Fig. 1) which we shall consider in the following sub-
section. On neglecting the non-secular part of hyperfine
couplings it is obvious, that the RIBIP spin Hamiltonian,
ĤRIBIP can be put in the following form:

ĤHRIBIP ¼ oDŜSDz þ oAŜSAz þ oRŜSRz þ JŜSAŜSR ð32Þ

for any number of magnetic nuclei in the radical ion and the
biradical. For instance, for the considered model of biradical
one has: oA ¼ o0 , oR ¼ o0	A/2, depending on the nuclear
spin projection IRz ¼ 	1

2 (for a spin-1/2 nucleus located on R�).
The frequency oD equals o0 in the absence of hyperfine cou-
pling in the radical ion D+�, and oD ¼ o0+

P
N
i¼1aiI

D
iz in the

presence of magnetic nuclei, where IDiz are the z-projections
of i-nuclear spin in the radical ion D+�.
The RIBIP Hamiltonian also has the same form, eqn. (32),

in the case of unequal g-factors of the radicals D+�, A�� and R�.
Starting from Hamiltonian, eqn. (32), we obtain the follow-

ing analytical expression for rDA,SS(B,t):

rDA;SSðB;tÞ

¼1

4
þ 1

8Q2
2n2þJ2þQðQ�nÞcos oAþoR�2oD�J�Q

2
t

� �


þQðQ�nÞcos oAþoR�2oDþJ�Q

2
t

� �
þJ2 cosðQtÞ

þQðQþnÞcos oAþoR�2oD�JþQ

2
t

� �

þQðQþnÞcos oAþoR�2oDþJþQ

2
t

� ��
ð33Þ

where Q2 ¼ (oA�oR)
2+ J 2, n ¼ oA�oR . Then for

�rrDA,SS(B,t) from eqn. (33) we obtain:

�rrDA;SSðB;tÞ¼
3

8
þ1

4
cos

oAþoR�2oD

2
t

� �
ð34Þ

Eqns. (33) and (34) are also valid for negative J. As it follows
from eqn. (34) for a one-nucleus biradical in the absence of
hyperfine coupling in the radical ion D+� the singlet state

Fig. 3 Fluorescence kinetics in weak magnetic fields. The radical ion
D+� has a broad hyperfine structure with second moment s2 ¼ 102

mT2. Recombination function F(t) ¼ (1/t0)exp(�t/t0), t0 ¼ 50 ns,
hyperfine coupling constant A ¼ 3 mT, J ¼ 500 mT. Ī(t) is the slowly
changing part of fluorescence intensity.
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population �rrDA,SS(B,t) is given by:

�rrDA;SSðB;tÞ¼
3

8
þ1

4
cos

A

4
t

� �
ð35Þ

independent of the position of the magnetic nucleus in the
biradical.
Thus, oscillation frequencies of �rrDA,SS(B,t), and conse-

quently of Ī(t), in zero and high magnetic field differ by a factor
of three (see also Fig. 2) and are equal to 3

4A and to A/4,
respectively.
In another case when the radical ion D+� has a broad hyper-

fine structure, the cosine in eqn. (34) is averaged to zero, and
for �rrDA,SS(B,t) we obtain the result announced in the preceding
subsection:

�rrDA;SSðB; tÞ ¼
3

8
ð36Þ

In the absence of exchange interaction, substituting J ¼ 0 in
eqn. (33), we obtain for the absence of hyperfine coupling in
the radical ion D+� the well-known result:25

rDA;SSðB; tÞ ¼ �rrDA;SSðB; tÞ ¼
1

2
þ 1

2
cosðoA � oDÞt ð37Þ

When the spin-1/2 nucleus is located on A��, we have:

rDA;SSðB; tÞ ¼ �rrDA;SSðB; tÞ ¼
1

2
þ 1

2
cos

A

2
t

� �
ð38Þ

Therefore exchange interaction in high magnetic fields man-
ifests itself as a decrease of the oscillation frequency of singlet
state population �rrDA,SS(B,t) from A/2 to A/4.
For a radical ion D+� with a broad hyperfine structure, and

in the absence of exchange interaction, the singlet state popula-
tion rDA,SS(B,t) quickly reaches its stationary value:

rDA;SSðB; tÞ ¼ �rrDA;SSðB; tÞ ¼
1

2
ð39Þ

Therefore exchange interaction decreases this stationary value
from 1/2 to 3/8.

C. Spin dynamics in the J-resonance region

In a magnetic field close to the value of the exchange integral
(within the accuracy of the hyperfine coupling constant A) it is
important to take into account mixing of T�aN and SbN states
(case III in Fig. 1) with matrix element A/2

p
2.

The mixing of these states has a resonance dependence on B
in passing through the region B� J. Neglecting the energy for-
bidden transitions, such as SaN$T0aN , for the absence of
hyperfine coupling in the radical ion D+� one can obtain the
following analytical expression for the singlet state population:

rDA;SSðtÞ¼
3

8
þ 1

16
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where
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For a radical ion D+� with a broad hyperfine structure, the
expression for the singlet state population is much simpler:

rDA;SSðtÞ ¼
3

8
þ 1

16
cos2 j cos E1 �

J

4

� �
t

�

þ sin2 j cos E2 �
J

4

� �
t

�

� 1

64

A2
�
2

Z2
ð1� cosZtÞ þ 1

16
cos Jt ð42Þ

For the derivation of eqn. (42) we used eqn. (18) for TD
zz, which

implies B� s. It is obvious, that in the absence of hyperfine
coupling in D+� the eqn. (40) well describes spin dynamics
for a magnetic field B�A, i.e., for regions II and III in Fig. 1.
For a broad hyperfine structure of D+� eqn. (42) describes spin
dynamics well for B�max(A,s). But applicability of both
eqn. (40) and eqn. (42) has a restriction on time t. When deriv-
ing eqns. (40) and (42) we neglected the energy-forbidden tran-
sitions, such as SaN$T0aN . Their consideration would give a
correction to frequencies in eqns. (40) and (42) of the order A2/
J, A2/o0 . It is obvious that these corrections can be neglected
at instant t, if the conditions (A2/J)t� 1, (A2/o0)t� 1 are
met. Thus the eqns. (40) and (42) well describe the singlet state
population kinetics in the time domain: t<min(J/A2,o0/A

2),
where J, A, o0 are taken in frequency units. This conclusion
is verified by comparison of calculations using (40) with exact
numerical calculations taking account of all terms of RIBIP
Hamiltonian. Such a comparison for B ¼ J ¼ 500 mT and
A ¼ 3 mT shows excellent coincidence up to 200 nanoseconds.
This is in a good agreement with the above stated criteria, since
in this case J/A2 ¼ 315 ns. Calculations with the same values
of B and J but with A ¼ 1 mT give coincidence for much
longer time up to 1200 ns. This is also in good agreement with
the criteria, since J/A2 ¼ 2840 ns in this case.
Note, that for J< 0 the J-resonance occurs at B� |J|, and its

appearance is due to resonance mixing of SaN and T+bN
states. To adjust eqns. (40) and (41) for J< 0 one has to replace
in eqns. (40) and (41): J! |J| and A!�A.
It is easy to see that in the region of J-resonance rDA,SS(t)

contains both low- and high-frequency harmonics, the latter
with frequency close to J. This is true not only for the region
of J-resonance, but for any strongmagnetic fieldB�max(A,s).
Indeed, to analyze harmonics in eqns. (40) and (42) in mag-
netic fields far from J-resonance, i.e. when |o0� J|�A, we
consider the variation of sin2j and cos2j with the magnetic
field. It is easy to see, that to the left of the J-resonance cos2j
tends to zero and sin2j� 1, and, on the contrary, to the right
of the resonance cos2j� 1, sin2j� 0.Analyze now, for instance,
the term sin2jcos(E2+A/4� J/4)t in eqn. (40). When o0< J
(both close to the resonance or far from it), the frequency
E2+A/4� J/4 is close (by absolute value) to J and sin2j� 1.
For o0 > J and |o0� J|�A this frequency tends to o0 , but
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sin2j� 0, so one can neglect the term sin2jcos(E2+A/4� J/
4)t in this region. Thus, the term sin2jcos(E2+A/4� J/4)t
either oscillates with high-frequency J, or is negligible.
A similar analysis for other terms in eqns. (40) and (42) leads

to the conclusion that the frequency spectrum of the kinetics as
given by eqns. (40) and (42) in strong magnetic fields contains
either low-frequency components (frequencies comparable
with the hyperfine coupling constant A), or high-frequency
components with frequencies close to J(to within the hyperfine
coupling constant A). Components with other frequencies are
negligible in amplitude.
Keeping only low-frequency harmonics in eqn. (40) (i.e. fil-

tering harmonics with frequencies close to J) one can obtain
the following expression for �rrDA,SS(t):

�rrDA;SSðtÞ ¼
3

8
þ 1

16
3 cos

At

4
þ sin2 j cos E1 þ o0 �

J

4

� �

t

þ cos2 j cos E2 þ o0 �
J

4

� �
t

�

� 1

64

A2
�
2

Z2
ð1� cosZtÞ ð43Þ

Performing the same procedure for eqn. (42), we obtain an
even simpler expression for �rrDA,SS(t):

�rrDA;SSðtÞ ¼
3

8
� 1

64

A2=2

Z2
ð1� cosZtÞ ð44Þ

The last term (1/128)(A2/Z2)(1� cosZt) in eqns. (43) and
(44) exhibits a resonance at o0 ¼ J�A/4 and coincides with
the quantum dynamics of a two-level EPR spin system in the
rotating frame to within a numerical factor.26

One can establish the following correspondence with a EPR
two-level spin system: the value (o0� J+A/4) corresponds to
the splitting between spin levels in the rotating (with the fre-
quency of the resonant magnetic field) frame, whereas the
matrix element A/2

p
2 between the states corresponds to the

amplitude of the resonant magnetic field (see26). It is obvious
that in our case this two-level system comprises the pair of spin
states T�a and Sb.
In Fig. 4 there are represented numerically calculated depen-

dences Ī(t)/I(0) for a set of magnetic fields B, for the absence of
hyperfine coupling (Fig. 4a) and for a broad hyperfine struc-
ture (Fig. 4b) in the radical ion D+�. One can see that the form
of the kinetic curves distinctly changes upon the passage
through the resonance region B� J.

D. MARY spectra

The J-resonance at region B� J is especially well pronounced
in the yield of fluorescence Ifl(B), defined as:

IflðBÞ ¼
Z 1

0

IðtÞdt ð45Þ

Assume for simplicity the recombination function F(t) to be an
exponential function

FðtÞ ¼ 1

t0
expð�t=t0Þ

Then the contribution DIfl(B) of the term (1/128)(A2/Z2)
(1� cosZt) in eqns. (43) and (44) to MARY (magnetic field
effect on reaction yield) spectrum is as follows:

DIflðBÞ ¼ � 1

64

A2=2

ðo0 � J þ A=4Þ2 þ 1

t20
þ A2=2

� � ð46Þ

It is easy to see that, apart from the sign, this contribution is
described by a Lorentzian function with a minimum (because
of a negative sign) in the magnetic field B ¼ (J�A/4). The
width of the resonance is determined by the inverse of the

RIBIP lifetime 1/t0 and the hyperfine coupling constant A.
The fact that the resonance occurs at a magnetic field
B ¼ (J�A/4), instead of B ¼ J is due to the energy shift of
the state T�aN by the value of A/4 because of contribution
of the secular part of hyperfine coupling, AIzSAz . While for
�rrDA,SS(t) in eqn. (44) the MARY spectrum is described to
within a constant by a Lorentzian function, for the kinetics
determined by eqn. (43), i.e. for the absence of hyperfine cou-
pling in the radical ion D+�, the MARY spectrum has a more
complex form. For F(t) ¼ (1/t0)exp(�t/t0) we have the fol-
lowing expression for the MARY spectrum Ifl(B):

IflðBÞ ¼
3

8
þ 1

16

3

1þ A2t20
16

þ sin2 j

1þ O2
1t

2
0

8>><
>>:

þ cos2 j

1þ O2
2t

2
0

� 1

8

A2t20
1þ Z2t20

9>>=
>>; ð47Þ

here

O1 ¼ E1 þ o0 �
J

4
; O2 ¼ E2 þ o0 �

J

4

Let us analyze the magnetic field dependence of frequencies
O1 , O2 in the J-resonance region. When passing through the
resonance with increasing magnetic field, frequency O1 starts
to rise, but at the same time (far from the J-resonance) the fac-
tor sin2 j tends to zero and makes the contribution of the term
containing this frequency insignificant. A similar effect occurs
for O2 , but in this case its high-frequency contribution is ham-
pered by the factor cos2j.

Fig. 4 Fluorescence kinetics in the J-resonance region: a. The radical
ion D+� does not contain magnetic nuclei. b. Radical-ion D+� has
broad hyperfine structure with second moment s2 ¼ 102 mT2. Recom-
bination function F(t) ¼ 1/t0 exp(�t/t0), t0 ¼ 50 ns, hyperfine cou-
pling constant A ¼ 3 mT, J ¼ 500 mT. Ī(t) is the slowly changing
part of fluorescence intensity.
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From these two frequencies O1 , O2 only one, O1 , turns to
zero, it occurs at o0 ¼ J�A/2.
The linear expansion of O1 in the vicinity of o0 ¼ J�A/2

gives:

O1 ¼
1

3
o0 � J þ A

2

� �
;

Substitution of this expansion in (47) gives for Ifl(B):

IflðBÞ ¼
3
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Now it is clearly seen that the second term in eqn. (48) is a
Lorentzian function with a maximum at o ¼ J�A/2 and with
the width determined by inverse of the lifetime 1/t0 , in con-
trast to the fourth term in eqn. (48) described by a Lorentzian
function with its centre at o ¼ J�A/4 and with the width of
the order of max(A,1/t0). Note, that these resonances are
opposite in sign. Thus, if, for instance, A > 1/t0 then the
MARY spectrum in the J-resonance region is described by a
wide resonant trough centered at o0 ¼ J�A/4 with a width
of A, and overlapped by a narrow resonant peak centered
at o0 ¼ J�A/2.
The occurrence of this narrow resonant line is caused,

obviously, by the concurrence of the Larmor frequency o0 of
the radical ion D+� (in the absence of hyperfine coupling in
D+�) with one of the frequencies determining spin evolution
of biradical at B ¼ J�A/2. In other words, the frequency
spectrum of �rrDA,SS(t) is determined by differences22 (Ei�Ej)/
�h, where Ei , Ej are the energies of stationary states of the
combined radical ion and biradical spin system. In a

magnetic field B ¼ J�A/2, two spin levels of this system
cross. This causes appearance of the narrow line, as it generally
takes place for MARY spectra in case of level crossing.22,23

This conclusion is illustrated by Fig. 5 representing the
results of numerical calculations of fluorescence yield Ifl(B)
defined by eqn. (45), with the consistent account of all terms
of RIBIP Hamiltonian. The recombination function F(t) was
taken as F(t) ¼ (1/t0)exp(�t/t0), with t0 ¼ 50 ns. Calcula-
tions were carried out with a step of 0.1 mT, for a range of
magnetic field from zero up to 550 mT. The exchange integral
was equal to J ¼ 500 mT, and the hyperfine coupling constant
A ¼ 3 mT. The solid line corresponds to a broad hyperfine
structure of the radical ion D+�, the dashed line to the absence
of hyperfine coupling in the radical ion D+�. In both cases the
broad resonance trough occurs at B ¼ J�A/4. In addition, in
the absence of hyperfine coupling in D+�, a narrow resonant
peak centered at B ¼ J�A/2 appears in complete accordance
with the earlier conclusions. A pronounced change of Ifl(B)
occurs within the change of the magnetic field from zero up
to the value of the order of the hyperfine coupling constant.
This is a MARY resonance in zero magnetic field. The ampli-
tude of the resonance in zero field essentially exceeds that for
the J-resonance.

Concluding remarks

In the above consideration we did not take into account sev-
eral essential factors affecting the evolution of RIBIP spin sys-
tem. The first of these is a possible presence of several magnetic
nuclei in the biradical. To consider this effect we performed
numerical calculations of MARY spectra for a biradical with
a 14N nucleus (I ¼ 1) located in the stable radical centre R�,
and many other magnetic nuclei with smaller hyperfine cou-
pling constants located at the radical centre A��. Hyperfine
coupling with the nitrogen was taken into account accurately,
while hyperfine couplings with the other nuclei were consid-
ered in the so-called semiclassical approximation. Such a
model biradical corresponds well enough to biradical anions
formed under ionization of solutions containing derivatives
of anthracene, terphenyl or tolan having a stable nitroxyl radi-
cal centre moiety. Such compounds were recently synthesized
and investigated.17 The calculated MARY spectra in weak
magnetic fields and in the J-resonance region are shown in
Fig. 6. The hyperfine coupling constant and the second

Fig. 5 MARY spectra for a biradical with one spin 1/2 magnetic
nucleus. Recombination function F(t) ¼ 1/t0 exp(�t/t0), t0 ¼ 50 ns,
hyperfine coupling constant A ¼ 3 mT, J ¼ 500 mT. The radical ion
D+� has a broad (solid line) or narrow (dashed line) EPR spectrum.

Fig. 6 MARY spectra for a biradical with one 14N nucleus (I ¼ 1)
located in the stable radical centre R� (hyperfine coupling constant
1.4 mT) and many other magnetic nuclei with smaller hyperfine cou-
pling constants (second moment of hyperfine structure D2 ¼ 0.0068
mT2) located in radical centre A��. The radical ion D+� has broad
(solid line) or narrow (dashed line) EPR spectrum.
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moment of the hyperfine structure of A�� were chosen as 1.4
mT and 0.0068 mT2, respectively. These values are close to
expected for a radical anion formed by a capture of electron
by derivatives of perdeuterated p-terphenyl having a nitroxyl
radical centre. The recombination function was taken the same
as above: F(t) ¼ (1/t0)exp(�t/t0) with t0 ¼ 50 ns. It is easy to
see, that the calculations confirm the qualitative conclusions
made above for the simplest model of a biradical having one
magnetic nucleus.
The next factor not taken into account in the above consid-

eration is the modulation of the exchange integral by confor-
mational dynamics of the molecular bridge (the degree of
this modulation depends, certainly, on the rigidity of this
bridge). Consider first the effect of this modulation on radio-
fluorescence in passing from weak (zero) to strong magnetic
fields. From the biradical spin level scheme of Fig. 1 it is seen,
that the change of spin dynamics of the biradical in passing
from weak to strong fields is caused by switching off the mixing
of the pairs of triplet spin states, T0aN with T+bN , and T�aN
with T0bN . In zero magnetic field they effectively mix up, while
in strong magnetic fields this mixing is forbidden by energy.
Obviously, if the biradical spends most of its time in conforma-
tions with J�A, the modulation of the exchange integral does
not change the spin dynamics. Triplet levels are completely iso-
lated from the singlet ones. Level splittings and matrix transi-
tion elements between them do not depend on the exchange
integral. A modulation of the exchange integral can only affect
high-frequency harmonics, of the order of J, in the singlet state
population. In experiment they are filtered out automatically
due to finite lifetime of the fluorescent excited state and to
the limited time resolution of the experimental setup. We per-
form such a filtration analytically, or numerically, therefore,
for instance, eqns. (26), (27), (35) and (36) for singlet state
population �rrDA,SS(t), still remain valid in the presence of mod-
ulation of the exchange integral.
For the J-resonance region, a modulation of the exchange

integral is equivalent to the frequency migration in a two-level
system, i.e., change of splitting between resonant levels. In the
case considered, modulation of the exchange integral produces
a modulation of the splitting (frequency migration) in the two-
level system SbN and T�aN . If the motion of the biradical
molecular bridge is very slow, such that D2

Jt
2
bir � 1, where D2

J

is the dispersion of the exchange integral and tbir is the charac-
teristic correlation time, then the J-resonance line is an in-
homogeneous broad line with the second moment D2

J centered
at B� J̄, where J̄ is the time averaged mean value of J(t). In the
other limiting case, when D2

Jt
2
bir � 1 (the case of strong nar-

rowing) the shape of the J-resonance is Lorentzian with the
same maximum position as for the slow motion, i.e., at B� J̄
and with the width equal to D2

Jtbir .
The third factor not taken into account is paramagnetic

relaxation of the electron spins. All the qualitative conclusions
made for magnetic effects in recombination of radical ion pairs
also hold true for the radical/biradical recombination. For
instance, electron spin relaxation essentially changes the shape
of the kinetic curves I(t). As to MARY resonances, paramag-
netic relaxation only slightly contributes to their width both
in weak magnetic field and in the J-resonance region if
T1� t0 ,A�1

eff , where Aeff is the characteristic value of the hyper-
fine coupling constant.
Thus, we believe that our conclusions made for a very simple

model hold true for more realistic pairs, too.
The J-resonance in the radical/biradical recombination

resembles to some extent the J-resonance of chemically-
induced dynamic nuclear polarization (CIDNP) in the recom-
bination of biradicals formed in photochemical reactions.27,28

However there are essential distinctions between them. In the
case of CIDNP, the biradical is formed in a correlated spin
state, whereas in the case of radical/biradical recombination
the spin state of the biradical at the instant of its formation

is in equilibrium. Furthermore, in our case, the spin system
actually is not a two-spin, as for CIDNP in biradicals, but a
three-spin system. At the same time the theoretical analysis
of this three-spin system is much easier and more transparent,
than in the case of CIDNP. This is due to the fact that in the
case of CIDNP spin dynamics is complicated by the conforma-
tional motion of the biradical, since recombination occurs only
from the singlet spin state of the biradical (see refs. 27 and 28).
In the system considered here, recombination occurs both
from singlet and triplet states of the pair D+�/A��. This
circumstance strongly facilitates the theoretical analysis of
such a system.
The performed analysis shows, that resonant changes of the

kinetics as well as of the yield of the fluorescence resulting from
radical ion/biradical recombination occur both close to zero
magnetic field and in a magnetic field close to the value of
exchange integral. The latter gives a principlal opportunity
to determine the exchange integral with high accuracy.
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